Quiz 1, November 5, 2004

Prof Karameh

Directions:

- You will have 1.5 hrs for this quiz.
- Write down your name in ink on all the pages. DO IT NOW!
- Answers must be explained or derived. DO NOT just write down an answer.
- It is a good idea to read the whole test before you begin. Some problems are divided into several parts with percentages indicated. You might be able to solve different parts independently.
- DO NOT talk to any of your colleagues under any circumstances. You will be penalized without warning.

YOUR NAME HERE:

PROBLEM 1 (10\%)
Consider the resistive network shown in figure 1. Find the voltage across the 6Ω resistor V_{6}.

Figure 1: Problem 1

PROBLEM 2 (20\%)
Consider the network shown in figure 2,
a) If the dependent voltage source is such that

$$
V_{d}=-2 V_{x},
$$

find the amplification ratio $A_{v}=V_{2} / V_{1}$ where V_{2} and V_{1} are as labelled.
b) If the dependent voltage source is $V_{d}=a V_{x}$, find the constant a such that the current i_{o} in the $1 / 4 \Omega$ resistor is zero.

Figure 2: Problem 2

PROBLEM 3 (20\%)
Consider the resistive network shown in figure 3.
(a) Find the voltage across the resistance termed R for any value of R.
(b) Find the maximum power $P_{\text {max }}$ that could be transferred to the load resistance R.

Figure 3: Problem 3

Problem 4 (10\%)
Find the power absorbed by the 10 Ohm resistor (termed with voltage v_{10}) in the following circuit (figure 4) using superposition.

Figure 4: Problem 4

PROBLEM 5 (20\%)
Find the thevenin equivalent of the circuit shown to the left of a,b (inside the box).

Figure 5: Problem 5

PROBLEM 6 (10\%)
Consider the circuit shown in figure 6 below.

Figure 6: Problem 6
(a) Is the interconnection valid? explain.
(b) If you answered yes in part (a), find V_{1}, V_{2} if the total power absorbed in this circuit is 2150 W .

PROBLEM 7 (10\%)
Consider the circuit shown in figure 7. Find the constant k such that $v_{y}=0$.

Figure 7: Problem 7

